Neurovascular and neurometabolic derailment in aging and Alzheimer's disease
نویسندگان
چکیده
The functional and structural integrity of the brain requires local adjustment of blood flow and regulated delivery of metabolic substrates to meet the metabolic demands imposed by neuronal activation. This process-neurovascular coupling-and ensued alterations of glucose and oxygen metabolism-neurometabolic coupling-are accomplished by concerted communication between neural and vascular cells. Evidence suggests that neuronal-derived nitric oxide ((•)NO) is a key player in both phenomena. Alterations in the mechanisms underlying the intimate communication between neural cells and vessels ultimately lead to neuronal dysfunction. Both neurovascular and neurometabolic coupling are perturbed during brain aging and in age-related neuropathologies in close association with cognitive decline. However, despite decades of intense investigation, many aspects remain poorly understood, such as the impact of these alterations. In this review, we address neurovascular and neurometabolic derailment in aging and Alzheimer's disease (AD), discussing its significance in connection with (•)NO-related pathways.
منابع مشابه
Central Role of the EGF Receptor in Neurometabolic Aging
A strong connection between neuronal and metabolic health has been revealed in recent years. It appears that both normal and pathophysiological aging, as well as neurodegenerative disorders, are all profoundly influenced by this "neurometabolic" interface, that is, communication between the brain and metabolic organs. An important aspect of this "neurometabolic" axis that needs to be investigat...
متن کاملNeurovascular function in Alzheimer's disease patients and experimental models.
The ability of the brain to locally augment glucose delivery and blood flow during neuronal activation, termed neurometabolic and neurovascular coupling, respectively, is compromised in Alzheimer's disease (AD). Since perfusion deficits may hasten clinical deterioration and have been correlated with negative treatment outcome, strategies to improve the cerebral circulation should form an integr...
متن کاملAPOE Stabilization by Exercise Prevents Aging Neurovascular Dysfunction and Complement Induction
Aging is the major risk factor for neurodegenerative diseases such as Alzheimer's disease, but little is known about the processes that lead to age-related decline of brain structures and function. Here we use RNA-seq in combination with high resolution histological analyses to show that aging leads to a significant deterioration of neurovascular structures including basement membrane reduction...
متن کاملRole of microRNA as a biomarker in Alzheimer’s disease
Introduction: MicroRNAs are small, non-coding, and protected RNA molecules that regulate gene expression after transcription by mRNA degradation or inhibition of protein synthesis. The function of these molecules is critical to many cellular processes, including growth, development, differentiation, homeostasis, apoptosis, aging, stress resistance. In addition, some diseases including cancer, a...
متن کاملAnalysis of the incidence and mortality rate of Alzheimer's and other dementias during the last 30 years in Iran
Introduction: Assessing the course of Alzheimer's disease and other dementias is very important due to lack of a definitive treatment, increase in life expectancy, and aging population. This study aimed to investigate the long-term trend in the incidence and mortality rate of Alzheimer's and other dementias in Iran during 1990-2019. Materials and Methods: Age-Standardized Incidence Rate (ASIR) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2015